氧化石墨烯对硝化作用和N2O排放的影响:剂量和暴露时间
氧化石墨烯(GO)因其优异的压缩性、理想的生物相容性、优越的吸附能力和高导热性而受到广泛关注。预计到2023年,石墨烯市场生产价值将达到约13亿美元。无处不在的商业或工业应用将不可避免地导致这些纳米材料的暴露和释放,并最终在污水处理厂中积累。硝化作用是污水处理厂生物脱氮过程的中心和限速过程,主要是由氨氧化微生物(AOM)、亚硝酸盐氧化细菌(NOB)和完全氨氧化细菌(CAOB)主导进行。污水处理厂进水中的有毒物质会削弱这些硝化细菌的活性,降低脱氮效率,甚至加速氧化亚氮气体(N2O)的生成,从而导致温室效应的加剧和臭氧层的损耗。因此,必须重视对废水处理过程中氧化石墨烯暴露的评估。
氧化石墨烯的抗菌活性可通过与细菌培养物的直接接触来提高氧化应激和膜应激。除此之外,低浓度氧化石墨烯暴露还会使细菌功能化蛋白差异表达,最终导致细胞死亡。急性暴露于50~300 mg/L氧化石墨烯浓度中可使氧化石墨烯在活性污泥内部积累,从而通过影响水的浊度和污泥脱水能力来恶化出水质量。另外,0.06g/L的氧化石墨烯可以在4h内快速提高氨氧化细菌(AOB)和NOB的生物活性,且对活性污泥微生物功能的影响可忽略不计。综上所述,氧化石墨烯毒性的差异主要取决于暴露时间和氧化石墨烯的剂量。然而,长期接触下的氧化石墨烯对硝化细菌的潜在毒性尚不清楚。考虑到氧化石墨烯与活性污泥极容易结合共存,因此评估活性污泥长期暴露于氧化石墨烯下的风险是至关重要的。本研究采用序批模式运行的密封反应器评估浓度为10和100mg/L的氧化石墨烯在4h和10天内对硝化过程和N2O生成的影响。此外,通过对硝化污泥活性氧(ROS)、胞外聚合物(EPS)和代谢活性的分析,揭示了氧化石墨烯毒性的潜在作用机制。最后,对总细菌和硝化细菌(AOB、NOB和CAOB)进行量化,揭示了氧化石墨烯暴露下细菌丰度的变化。
研究表明,在初始4h,两种浓度的氧化石墨烯对氮转化均无负面影响。然而,100 mg/L氧化石墨烯暴露10天后显著削弱了NH4+-N和NO2--N的转化能力,加剧了N2O的生成,对活性污泥产生毒性作用。胞外聚合物(EPS)分析表明,100mg/L氧化石墨烯降低了硝化活性污泥的蛋白质含量。高浓度氧化石墨烯还抑制了过氧化物歧化酶(SOD)和过氧化氢酶(CAT)等内源抗氧化酶的活性,提高了活性污泥产生活性氧(ROS)的水平,使微生物受到更高的氧化应激。最后,定量PCR结果证实,氧化石墨烯暴露显著降低了CAOB和NOB的丰度,导致NO2--N积累,进一步刺激了N2O的生成。这是高浓度下氧化石墨烯显著促进N2O生成的主要原因。本研究从剂量和暴露时间两方面为氧化石墨烯对硝化作用和N2O生成的影响提供了新的认识,强调了避免氧化石墨烯向污水处理厂释放的重要性。
在第1次和第30次循环中,在不同氧化石墨烯浓度下测定了EPS的两种主要成分多糖(PS)和蛋白(PN)。在第30个循环中,各组氧化石墨烯浓度均显著提高了EPS含量。然而,PN浓度在100mg/LGO组显著低于对照组。在本研究中,EPS水平的显著增加可能是NH4+-N去除速率增加的主要原因,因为在第30个循环中完成氮转化的时间比第1循环少。此外,100mg/L GO组EPS含量大幅降低可能是NH4+-N去除效率下降的原因。因此,推测氧化石墨烯对EPS含量的抑制可能导致了脱氮效率的下降。
推荐文章
-
随着科学技术的不断发展,双级RO反渗透设备的制造水平也不断提高,但随之而来的是对设备安装调试技能要求的日益严格。 但是,由于双级RO反渗透设备安装的复杂性等原因,在实际的安装调试过程中,依旧会常常出现一些故障问题。因此,采取正确的措施对双级RO反渗透设备进行安装与调试,对于保障设备的正常运行具有十分重要的意义。 反渗透装置的安装 1、双级RO反渗透设备装置运到现场后,应放置于室内,周围环境温度较低不得低于5℃,较高不得高于38℃。当温度高于35℃时,应加强通风措施。 2、装置到达后,应在一个月内安装完毕,并应立即进行通水试车运行。装置在未进行通水试车前,任何阀门均不得开启。 3、装置就位后,应调整装置支承点,使组件处于基本水平的位置,且与基础接触可靠。装置与供水泵相接管跻及阀门在连接之前应进行脱脂处理,供水泵过流部分也应进行脱脂处理。 4、双级RO反渗透设备的产水管较大输出高度应小于8米。清洗装置与R/O装置间如用硬管连接,则进、回液管均不得直接敷设在地面上,以免损坏。 反渗透膜组件的安装 1、检查压力容器...
评论